

Service Builder - A portal-wide (and beyond) data access tool

Liferay service builder is a tool which will generate the service layer to Plugin portlets. Though

service builder has not undergone through any major changes in Liferay 7, this section will precisely

explain changes. Then, this section covers:

Creating service builder module

Understanding the generated modules and service layer

Using service builder services in Portlets

Creating Service Wrappers to implement the custom logic

Customization of any application is extremely significant for both individual product performance and

commercial success of the product. Liferay 7 offers Service wrappers to handle specific

customizations. This section covers:

Creation of new wrapper module

Blade Service Template to create new Liferay modules

According to Liferay team itsef, creating Liferay modules in a workspace using Blade CLI is

very similar to creating them in a standalone environment. This section will cover step by

step guidelines about:

Creation of a module using service template

Using OSGi Services in portlets – The real potential of Liferay 7

The indispensable role of OSGi in Liferay 7 is out rightly clear so far. It is vital to understand optimum

usage of OSGi service to make the best out of it. This article covers:

Creating OSGi Service

Consuming OSGi Services

Service Builder - A portal-wide (and beyond) data access tool

Service Builder - A portal-wide (and beyond) data access tool

Liferay service builder is a tool which will generate the service layer to Plugin portlets. Though

service builder has not undergone through any major changes in Liferay 7, this section will precisely

explain changes. Then, this section covers:

Creating service builder module

Understanding the generated modules and service layer

Using service builder services in Portlets

Liferay service builder is a tool for developer to quickly develop the business service layer of the

system. Based on the entities defined in an XML file, service builder auto-generates model,

persistence and service layer code. The generate code provides basic operations like create, read,

update, delete and find. This allows developers to save a lot of time and lets them focus on higher

level business logic. Apart from this service builder provides inbuilt cache mechanism, dynamic

queries, finder method mechanism, auto generated SQL files, remote services etc.

Service builder tool was available prior to Liferay 7 as well. In Liferay 7, service builder has not

undergone any major changes apart from few differences mentioned below:

 The business layer is now divided into two modules: *-api and *-service module.

 The modules who want to use the service, needs to access the services using OSGi

declarative service injection.

 The service builder modules have module-hbm.xml, module-spring.xml and portlet-model-

hints.xml configuration files.

Creating service builder module

 To illustrate the steps, we will create book service.

1) Create new service builder modules.

The blade command format:

blade create –t service-builder [-p package-name] project-name

In our example, we will run the command:

blade create –t service-builder –p com.azilen.training.book book

2) The above command will create two modules in Liferay workspace: “book-api” and “book-

service”. You will find the service.xml file in the book-service module.

This is how the project structure would look like:

3) Now, to push our book service example forward, add the following code in the service.xml:

<service-builder package-path="com.azilen.training.book">
 <namespace>tr</namespace>

 <entity name="Book" local-service="true" remote-service="true"
 uuid="true">

 <!-- PK fields -->
 <column name="bookId" primary="true" type="long" />

 <!-- Group instance -->
 <column name="groupId" type="long" />

 <!-- Audit fields -->
 <column name="companyId" type="long" />
 <column name="createdBy" type="long" />
 <column name="createDate" type="Date" />
 <column name="modifiedBy" type="long" />
 <column name="modifiedDate" type="Date" />

 <!-- Other fields -->
 <column name="bookName" type="String" />
 <column name="isbn" type="String" />
 <column name="pages" type="int" />
 <column name="authorName" type="String" />
 <column name="publishDate" type="Date" />

 <!-- Order -->
 <order by="asc">
 <order-column name="bookName" />
 </order>

 <!-- Finder methods -->
 <finder name="BookName" return-type="Collection">
 <finder-column name="bookName" case-sensitive="false"
 comparator="LIKE" />
 </finder>
 <finder name="Isbn" return-type="Collection">
 <finder-column name="isbn" case-sensitive="false"
 comparator="LIKE" />
 </finder>

 </entity>
</service-builder>

4) Run the following blade command to run the service builder:

blade gw buildService

5) To deploy the service run “blade deploy” command.

Understanding the generated modules and service layer

 After running “blade create” command, two modules will be generated as mentioned above.

This is how the project structure will look like after the service builder tool is run:

As you see here, the whole generated API is divided between two modules i.e. book-api and book-

service. Since Liferay 7 favours modularity, the OSGi style of module architecture is used for service

builder modules. All the interfaces and contract-classes are included in the book-api module. The

implementation related classes are taken care by the book-service module.

In Liferay 6.2, the service builder tool used to create the interfacing and implementation classes in

the same plugin and wrap all the api related interface & classes into a service-jar. In Liferay 7, service

builder tool creates two modules and if any other module wants to use the services, it needs to refer

the *-api module. The implementation service objects will be injected by the OSGi runtime.

The familiar service.xml file will be generated in the *-service module. The format of the service.xml

file has not changed from the 6.2 version (so, all your previous knowledge of service builder still

applies here). Apart from the format of service.xml file, the class hierarchy of generated classes is

not changed from Liferay 6.2. Followings are some other concepts that remain unchanged in Liferay

7.

 Custom SQL

 Dynamic Query

 Finder methods and finder classes

 Adding new methods into EntityImpl, EntityServiceImpl and EntityLocalServiceImpl

classes

 Model Hints

Using service builder services in Portlets

Now that our custom service is created and deployed, it’s time to make use of that service. We will

step by step see how we can utilize the book service in a portlet.

1) Create a portlet.

As we have already seen how to create a portlet, run the following command to create an

MVC portlet :

blade create –t mvc-portlet –p com.azilen.training.book.web –c Book book-web

2) For injecting the service object in our portlet, @Reference annotation is used.

Now open the BookPortlet.java and paste the following code.

package com.azilen.training.book.web.portlet;

import java.io.IOException;
import java.util.List;

import javax.portlet.Portlet;
import javax.portlet.PortletException;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import org.osgi.service.component.annotations.Component;
import org.osgi.service.component.annotations.Reference;

import com.azilen.training.book.model.Book;
import com.azilen.training.book.service.BookLocalService;
import com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet;

@Component(
 immediate = true,
 property = {
 "com.liferay.portlet.display-category=category.sample",
 "com.liferay.portlet.instanceable=true",
 "javax.portlet.display-name=book-web Portlet",
 "javax.portlet.init-param.template-path=/",
 "javax.portlet.init-param.view-template=/view.jsp",
 "javax.portlet.resource-bundle=content.Language",
 "javax.portlet.security-role-ref=power-user,user"
 },
 service = Portlet.class
)
public class BookPortlet extends MVCPortlet {

 private BookLocalService bookLocalService;

 @Reference
 public void setBookLocalService(BookLocalService bookLocalService) {
 this.bookLocalService = bookLocalService;
 }

 @Override
 public void doView(RenderRequest renderRequest, RenderResponse

renderResponse)
 throws IOException, PortletException {

 List<Book> bookList = bookLocalService.getBooks(-1, -1);

 renderRequest.setAttribute("bookList", bookList);

 super.doView(renderRequest, renderResponse);
 }
}

In this portlet, we are getting the list of all books and passing that list to the jsp file where

we can display the same in desired format.

As you must have noted, we have used @Reference annotation to bind the service exposed

by the api module.

Creating Service Wrappers to implement the custom logic

Customization of any application is extremely significant for both individual product performance and

commercial success of the product. Liferay 7 offers Service wrappers to handle specific

customizations. This section covers:

Creation of new wrapper module

In the “service builder” section, we saw how to create custom entities and create service layer for

those custom entities. Liferay’s own service layer is also built using service builder tool. What if we

want to customize any service method from Liferay’s services? Well, “Service Wrapper” is the way

for you.

In Liferay 6.2, we used to create service wrapper hooks to override Liferay’s inbuilt (OOTB) services.

In Liferay 7, as OSGi module approach is used, we can create service wrapper modules to implement

custom logic over OOTB services.

Let’s create a service wrapper module that overrides method of UserLocalService.

1) Create new service wrapper module.

The blade command format:

blade create –t service-wrapper [-p package-name] [-c class-name] [-s service-wrapper-class-

name] module-name

For our example, run following command:

blade create –t service-wrapper –p com.azilen.training. swrapper –c

CustomUserLocalService –s com.liferay.portal.kernel.service.UserLocalServiceWrapper

service-wrapper

2) A new module, named service-wrapper, will be created in the “modules” directory of the

Liferay workspace. The project structure of the service-wrapper module will be :

3) Now, open the CustomUserLocalService class and write following code.

package com.azilen.training.swrapper;

import java.util.Map;

import org.osgi.service.component.annotations.Component;

import com.liferay.portal.kernel.exception.PortalException;
import com.liferay.portal.kernel.log.Log;
import com.liferay.portal.kernel.log.LogFactoryUtil;
import com.liferay.portal.kernel.service.ServiceWrapper;
import com.liferay.portal.kernel.service.UserLocalServiceWrapper;

@Component(
 immediate = true,
 property = {
 },
 service = ServiceWrapper.class
)
public class CustomUserLocalService extends UserLocalServiceWrapper {

 private static final Log _log =

LogFactoryUtil.getLog(CustomUserLocalService.class);

 public CustomUserLocalService() {
 super(null);
 }

 @Override
 public int authenticateByEmailAddress(long companyId, String emailAddress,

String password, Map<String, String[]> headerMap, Map<String,
String[]> parameterMap, Map<String, Object> resultsMap)

 throws PortalException {

 // Custom logic
 _log.info("Custom Implementation of authenticateByEmailAddress()");

 // Calling Liferay's default implementation of service
 return super.authenticateByEmailAddress(companyId, emailAddress,

password, headerMap, parameterMap, resultsMap);
 }

}

4) Here, we have overridden the authenticateByEmailAddress() method. We are just adding

an informative message before calling the default/super implementation of the method.

Note that in the @Component annotation, the type of “service” is ServiceWrapper.class.

5) Now deploy your module to the Liferay instance by this command :

blade deploy

6) When you sign in to the portal using email address, you will see the message in the server

log.

7) Similarly, using service wrapper modules, you can override any methods of Liferay’s OOTB

services from any service class.

Blade Service Template to create new Liferay modules

According to Liferay team itsef, creating Liferay modules in a workspace using Blade CLI is

very similar to creating them in a standalone environment. This section will cover step by

step guidelines about:

Creation of a module using service template

Blade tool provides number of templates to help developers create different kinds of modules. One

of the templates provided by blade tools is “service” template. This template is used allows to create

a Liferay service as a Liferay module. In other words, service template helps to create a DS

component module.

com.liferay.portal.kernel.events.LifecycleAction is one of the extension points that can be leveraged

by service template. In Liferay 7, LifecycleAction interface replaces all legacy lifecycle events API such

as com.liferay.portal.kernel.events.Action, com.liferay.portal.kernel.events.SessionAction, and

com.liferay.portal.kernel.events.SimpleAction. OSGi service property “key” identifies a particular

lifecycle event.

Let’s understand this by taking an example of module which specifies login post action. We will

create a post login action which redirects user to his/her private page.

Follow the steps below:

1) Create a new module using “service” template :

The blade command format:

blade create –t service [-p package-name] [-c class-name] [-s service-class] module-name

For our example, run the following command:

blade create –t service –p com.azilen.training.lifecycle.loginpostaction –c

CustomLoginPostAction –s com.liferay.portal.kernel.events.LifecycleAction login-post-action

2) A new module, named “login-post-action”, will be created in “modules” directory of the

Liferay workspace. The project structure will be :

3) Now, open the CustomLoginPostAction class and paste the following code.

package com.azilen.training.lifecycle.loginpostaction;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import org.osgi.service.component.annotations.Component;

import com.liferay.portal.kernel.events.ActionException;
import com.liferay.portal.kernel.events.LifecycleAction;
import com.liferay.portal.kernel.events.LifecycleEvent;
import com.liferay.portal.kernel.exception.PortalException;
import com.liferay.portal.kernel.log.Log;
import com.liferay.portal.kernel.log.LogFactoryUtil;
import com.liferay.portal.kernel.model.User;
import com.liferay.portal.kernel.struts.LastPath;
import com.liferay.portal.kernel.util.PortalUtil;
import com.liferay.portal.kernel.util.StringPool;
import com.liferay.portal.kernel.util.WebKeys;

@Component(
 immediate = true,
 property = {
 "key=login.events.post"
 },
 service = LifecycleAction.class
)
public class CustomLoginPostAction implements LifecycleAction {

 private static final Log _log =
 LogFactoryUtil.getLog(CustomLoginPostAction.class);

 @Override
 public void processLifecycleEvent(LifecycleEvent lifecycleEvent) throws

ActionException {

 HttpServletRequest request = lifecycleEvent.getRequest();

 User user = null;
 try {
 user = PortalUtil.getUser(request);
 } catch (PortalException e) {
 _log.error(e);
 }

 if (user != null) {
 LastPath lastPath = new LastPath(StringPool.BLANK, "/user/" +

user.getScreenName());

 HttpSession session = request.getSession();

 session.setAttribute(WebKeys.LAST_PATH, lastPath);
 }
 }

}

- Note that we have provided an OSGi service propery named “key” which identifies the

lifecycle event as login.events.post.

- The OSGi service type is LifecycleAction.class.

- We have implemented the method processLifecycleEvent(LifecycleEvent

lifecycleEvent).

4) Now deploy your module to the Liferay instance by this command :

blade deploy

5) When a user signs in to the portal, he/she will be redirected to his/her private pages.

Apart from this lifecycle event, there are many other such portal lifecycle events supported like:

login.events.post,

logout.events.post,

logout.events.pre,

global.shutdown.events,

global.startup.events,

application.shutdown.events,

application.startup.events

Complete list can be found at:

 https://github.com/liferay/liferay-blade-samples#logineventspre

Using OSGi Services in portlets – The real potential of Liferay 7

The indispensable role of OSGi in Liferay 7 is out rightly clear so far. It is vital to understand optimum

usage of OSGi service to make the best out of it. This article covers:

Creating OSGi Service

Consuming OSGi Services

We have already seen how to use service builder and create modules containing custom entities

along with service layer in Liferay 7. When it comes to services, OSGi can unleash a lot of potential.

OSGi platform supports creating and registering dynamic services and those services can be injected

in other modules.

https://github.com/liferay/liferay-blade-samples#logineventspre

For a service to be available, its implementation must be registered in the OSGi runtime. The

consumer modules can use @Reference annotation to get the service object injected. Let’s see this

in action.

We will create a calculator OSGi service module and another module for the consumer portlet. To

keep these two related modules together, we will put them in one directory named “calc”. Firstly,

we will create a service module to register and expose the service in OSGi runtime.

Creating OSGi Service

1) Blade tool provides an activator module, by which we will be registering the service with

OSGi when the module is being loaded.

To create a module with activator template, the command format is:

blade create –t activator [-p package-name] [-c class-name] module-name

For our example, run the following command in the directory modules/calc:

blade create –t activator –p com.azilen.training.calc.activator –c CalcServiceActivator calc-

service

2) A module named “calc-service” will be created under “modules/calc” directory. The

command will auto-generate activator class

com.azilen.training.calc.activator.CalcServiceActivator.

3) Now we will add an interface for the service. Create an interface CalcService in package

com.azilen.training.calc.service.

We will keep one method for adding two integers as shown below.

package com.azilen.training.calc.service;

public interface CalcService {

 int add(int a, int b);

}

4) We will need to add an implementation class for the service method. For that, create a class

named CalcServiceImpl implementing CalcService. The class will look like this.

package com.azilen.training.calc.service.impl;

import com.azilen.training.calc.service.CalcService;

public class CalcServiceImpl implements CalcService {

 @Override
 public int add(int a, int b) {
 return a + b;
 }

}

5) It’s time to modify the activator to register the service.

package com.azilen.training.calc.activator;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceRegistration;

import com.azilen.training.calc.service.CalcService;
import com.azilen.training.calc.service.impl.CalcServiceImpl;

public class CalcServiceActivator implements BundleActivator {

 private ServiceRegistration<CalcService> reg;

 @Override
 public void start(BundleContext bundleContext) throws Exception {

reg = bundleContext.registerService(CalcService.class, new
CalcServiceImpl(), null);

 }

 @Override
 public void stop(BundleContext bundleContext) throws Exception {

 reg.unregister();
 }
}

The CalcServiceActivator class implements BundleActivator interface which comes from

OSGi API. We need to define two bundle lifecycle methods i.e. start() and stop().

When the OSGi runtime starts the bundle, it will call start method and when the bundle is

stopped the OSGi runtime will call the activator’s stop method.

To have activator class is not a compulsion for an OSGi module though.

6) In the start method of the CalcServiceActivator, we register the service using the

BundleContext object. We need to provide the service type (Class object) along with the

service implementation object. In the stop() method we have unregistered the service.

7) As a final step, we need to mention the service package in the export package list of the

module. To do this, modify bnd.bnd file and add Export-Package header as below.

Bundle-Activator: com.azilen.training.calc.activator.CalcServiceActivator
Bundle-Name: calc-service
Bundle-SymbolicName: com.azilen.training.calc.activator
Bundle-Version: 1.0.0
Export-Package: com.azilen.training.calc.service

Our calculator service is now ready to be used.

Note that the service implementation class and its package will be private to the module and

won’t be available for other modules. In real world, the service api and service

implementation classes and interfaces are put in separate modules.

Consuming OSGi Services

 We will create a calculator portlet to demonstrate the usage of calculator service.

1) Create an mvc portlet by running the below command in modules/calc directory.

blade create –t mvc-porlet –p com.azilen.training.calc.web –c CalcPortlet

2) You need to add service module as a compile time dependency in gradle build file to prevent

gradle from giving you errors in eclipse.

dependencies {
 compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel",
version: "2.0.0"
 compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib",
version: "2.0.0"
 compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"
 compileOnly group: "javax.servlet", name: "javax.servlet-api", version:
"3.0.1"
 compileOnly group: "jstl", name: "jstl", version: "1.2"
 compileOnly group: "org.osgi", name: "org.osgi.compendium", version: "5.0.0"
 compileOnly project(":modules:calc:calc-service")
}

3) Modify the CalcPorlet’s code as below

package com.azilen.training.calc.web.portlet;

import java.io.IOException;

import javax.portlet.Portlet;
import javax.portlet.PortletException;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import org.osgi.service.component.annotations.Component;
import org.osgi.service.component.annotations.Reference;

import com.azilen.training.calc.service.CalcService;
import com.liferay.portal.kernel.log.Log;
import com.liferay.portal.kernel.log.LogFactoryUtil;
import com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet;

@Component(
 immediate = true,
 property = {
 "com.liferay.portlet.display-category=category.sample",
 "com.liferay.portlet.instanceable=true",
 "javax.portlet.display-name=calc-web Portlet",
 "javax.portlet.init-param.template-path=/",
 "javax.portlet.init-param.view-template=/view.jsp",
 "javax.portlet.resource-bundle=content.Language",
 "javax.portlet.security-role-ref=power-user,user"
 },
 service = Portlet.class
)
public class CalcPortlet extends MVCPortlet {

 private static final Log _log = LogFactoryUtil.getLog(CalcPortlet.class);

 private CalcService _calcService;

 @Reference
 public void setCalcService(CalcService calcService) {
 this._calcService = calcService;
 }

 @Override
 public void doView(RenderRequest renderRequest, RenderResponse

renderResponse) throws IOException, PortletException {

 _log.info(_calcService.add(10, 15));

 super.doView(renderRequest, renderResponse);
 }
}

We have declared a service reference _calcService and provided its setter method.

The @Referene annotation will take care of the service injection. OSGi will inject proper

implementation object in the Portlet class.

4) In the default render method i.e. doView(), we have used _calcService to add two integers.

When the portlet is put on page and its render method is called, you can see the result of

the method in the logs.

5) It is advisable to null-check the service reference as the OSGi services are dynamic and can

be brought down at any time by stopping/uninstalling the service module.

Once you are done with understanding of Services and Modules for Liferay 7, you are ready to make

start with OOTB customizations.

